[(k+5)-(2k-1)][(k+5)+(2k-1)]=0

Simple and best practice solution for [(k+5)-(2k-1)][(k+5)+(2k-1)]=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for [(k+5)-(2k-1)][(k+5)+(2k-1)]=0 equation:


Simplifying
[(k + 5) + -1(2k + -1)][(k + 5) + (2k + -1)] = 0

Reorder the terms:
[(5 + k) + -1(2k + -1)][(k + 5) + (2k + -1)] = 0

Remove parenthesis around (5 + k)
[5 + k + -1(2k + -1)][(k + 5) + (2k + -1)] = 0

Reorder the terms:
[5 + k + -1(-1 + 2k)][(k + 5) + (2k + -1)] = 0
[5 + k + (-1 * -1 + 2k * -1)][(k + 5) + (2k + -1)] = 0
[5 + k + (1 + -2k)][(k + 5) + (2k + -1)] = 0

Reorder the terms:
[5 + 1 + k + -2k][(k + 5) + (2k + -1)] = 0

Combine like terms: 5 + 1 = 6
[6 + k + -2k][(k + 5) + (2k + -1)] = 0

Combine like terms: k + -2k = -1k
[6 + -1k][(k + 5) + (2k + -1)] = 0

Reorder the terms:
[6 + -1k][(5 + k) + (2k + -1)] = 0

Remove parenthesis around (5 + k)
[6 + -1k][5 + k + (2k + -1)] = 0

Reorder the terms:
[6 + -1k][5 + k + (-1 + 2k)] = 0

Remove parenthesis around (-1 + 2k)
[6 + -1k][5 + k + -1 + 2k] = 0

Reorder the terms:
[6 + -1k][5 + -1 + k + 2k] = 0

Combine like terms: 5 + -1 = 4
[6 + -1k][4 + k + 2k] = 0

Combine like terms: k + 2k = 3k
[6 + -1k][4 + 3k] = 0

Multiply [6 + -1k] * [4 + 3k]
[6[4 + 3k] + -1k * [4 + 3k]] = 0
[[4 * 6 + 3k * 6] + -1k * [4 + 3k]] = 0
[[24 + 18k] + -1k * [4 + 3k]] = 0
[24 + 18k + [4 * -1k + 3k * -1k]] = 0
[24 + 18k + [-4k + -3k2]] = 0

Combine like terms: 18k + -4k = 14k
[24 + 14k + -3k2] = 0

Solving
24 + 14k + -3k2 = 0

Solving for variable 'k'.

Factor a trinomial.
(6 + -1k)(4 + 3k) = 0

Subproblem 1

Set the factor '(6 + -1k)' equal to zero and attempt to solve: Simplifying 6 + -1k = 0 Solving 6 + -1k = 0 Move all terms containing k to the left, all other terms to the right. Add '-6' to each side of the equation. 6 + -6 + -1k = 0 + -6 Combine like terms: 6 + -6 = 0 0 + -1k = 0 + -6 -1k = 0 + -6 Combine like terms: 0 + -6 = -6 -1k = -6 Divide each side by '-1'. k = 6 Simplifying k = 6

Subproblem 2

Set the factor '(4 + 3k)' equal to zero and attempt to solve: Simplifying 4 + 3k = 0 Solving 4 + 3k = 0 Move all terms containing k to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + 3k = 0 + -4 Combine like terms: 4 + -4 = 0 0 + 3k = 0 + -4 3k = 0 + -4 Combine like terms: 0 + -4 = -4 3k = -4 Divide each side by '3'. k = -1.333333333 Simplifying k = -1.333333333

Solution

k = {6, -1.333333333}

See similar equations:

| -4+10=y-3 | | 3(k-8)(k-3)=0 | | (7y-3)+1=0 | | 3(u+5)-6u=39 | | 8-6x=4-7x | | (5p+3)-4=2p | | 12-5r=27 | | 16x-40+25=0 | | 2x-x+6=4 | | 2n-6=22 | | -2+3x=26-4x | | 5x^4+x^2-8=0 | | -4a+3=19 | | 10x+3x+2x=30 | | 28=-7(x+3) | | -80=1-9x | | x^2+4+4x-10+x^2+8x+4=180 | | c=30+10d | | 3(2x-4)=2x+20 | | 9(Z+4)-3(Z-4)=2(Z-1)+3(Z-2) | | c=30+30d | | -7+x=13 | | 9d-4d-3d-6-6d=0 | | -7(2x+8)=4(-5x-5) | | y=11-3(-3) | | -5(x-4)=5(x-2) | | 3x^2+31x-5.3=0 | | 4+10t+12m-3t-2m+15= | | 9x^2-7n-4=0 | | 9x-2(x-6)=7(x+1)+4 | | 20=-d+12 | | -5(x+1)=2(x+8) |

Equations solver categories